

Anthony Buda, Gordon Folmar,
Peter Kleinman, and Ray Bryant
USDA Agricultural Research Service
University Park, PA

<u>Cross ~ Border Workshop</u>

Adaptation to Climate Change:
Information and Tools for
Decision-Making

Tuesday, October 17, 2017

11:45 AM to 12:00 PM

Holiday Inn Syracuse/Liverpool

Syracuse, NY

Annual P export is a function of storm size

<u>Annual P export</u>

Pionke et al., 1996 (Water Resources Research)

The character of large storms is changing

especially in the Northeastern United States

Maximum daily rainfall is rising in the fall

In WE-38, the trend is significant from 1968 through 2012

What is the role of extreme rainfall in runoff generation and P loss from small basins?

Quantifying P losses in watershed runoff

The Mattern watershed

An 11-ha headwater agricultural basin

Buda et al., 2009 (Hydrological Processes)

Fragipan soils and saturated areas

disconnected saturated areas under dry conditions

Fragipan soils and runoff generation

connected saturated areas enhance runoff generation

Setting the stage for Tropical Storm Lee

Dry conditions prevailed until Irene delivered 116 mm of rain

Synoptic meteorology of Tropical Storm Lee

a predecessor rain event enhanced by two atmospheric rivers

ClimateReanalyzer.org; Gitro et al., 2014 (J. Operational Meteorology)

Tropical Storm Lee (September 7-8, 2011)

extreme rains on wet soils yielded 4th highest peak flow since 1968

Rainfall (in) 0.01 - 0.100.10 - 0.250.25 - 0.500.50 - 0.750.75 - 1.001.0 - 1.51.5 - 2.02.0 - 2.52.5 - 3.03 - 44 - 55 - 66 - 88 - 10>10

Tropical Storm Lee's rainfall was extreme

An average recurrence interval of once every 300 years

NOAA Atlas 14 Precipitation Frequency Data Server

Hydrologic response from Lee's rainfall

extreme rains enhanced saturation excess runoff processes

Extreme rainfall was only half the story

wet antecedent conditions exacerbated runoff from Lee

High P soils represent a P source to runoff

key factor is the hydrological connectivity with P source areas

The contributing area for Irene was small

only 0.4% of watershed was likely generating runoff and P loss

The contributing area for Lee was larger

as much as 28% of the watershed generated runoff and P loss

P loss from Tropical Storm Lee was profound

Lee contributed significantly to 2011 and decadal P loss

P loss patterns in the Susquehanna

Annual and decadal P loss trends mirrored those in Mattern

Will we see more Lees in the future?

depends on alignment of basin wetness and extreme rainfall trends

Annual precipitation is likely to increase by 10 to 20%, mainly during the winter season.

More than 80% of climate models suggest that successive dry days will rise by 5 to 10%.

